Nuprl Lemma : m-cont-real-fun_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[f:X ⟶ ℝ].  (m-cont-real-fun(X;d;x.f[x]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
m-cont-real-fun: m-cont-real-fun(X;d;x.f[x])
, 
metric: metric(X)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
m-cont-real-fun: m-cont-real-fun(X;d;x.f[x])
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Lemmas referenced : 
real_wf, 
rless_wf, 
int-to-real_wf, 
rleq_wf, 
mdist_wf, 
rabs_wf, 
rsub_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
setEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
productEquality, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[f:X  {}\mrightarrow{}  \mBbbR{}].    (m-cont-real-fun(X;d;x.f[x])  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_27_09
Last ObjectModification:
2019_10_02-AM-10_02_25
Theory : reals
Home
Index