Nuprl Lemma : m-cont-real-fun_wf

[X:Type]. ∀[d:metric(X)]. ∀[f:X ⟶ ℝ].  (m-cont-real-fun(X;d;x.f[x]) ∈ ℙ)


Proof




Definitions occuring in Statement :  m-cont-real-fun: m-cont-real-fun(X;d;x.f[x]) metric: metric(X) real: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T m-cont-real-fun: m-cont-real-fun(X;d;x.f[x]) prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q so_apply: x[s]
Lemmas referenced :  real_wf rless_wf int-to-real_wf rleq_wf mdist_wf rabs_wf rsub_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality setEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality productEquality setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[f:X  {}\mrightarrow{}  \mBbbR{}].    (m-cont-real-fun(X;d;x.f[x])  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-06_27_09
Last ObjectModification: 2019_10_02-AM-10_02_25

Theory : reals


Home Index