Nuprl Lemma : partition-mesh-nonneg

[I:Interval]. ∀[p:partition(I)]. (r0 ≤ partition-mesh(I;p)) supposing icompact(I)


Proof




Definitions occuring in Statement :  partition-mesh: partition-mesh(I;p) partition: partition(I) icompact: icompact(I) interval: Interval rleq: x ≤ y int-to-real: r(n) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a partition-mesh: partition-mesh(I;p) implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False subtype_rel: A ⊆B real: prop:
Lemmas referenced :  frs-mesh-nonneg full-partition_wf full-partition-non-dec less_than'_wf rsub_wf partition-mesh_wf int-to-real_wf real_wf nat_plus_wf partition_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis independent_functionElimination sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality natural_numberEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[p:partition(I)].  (r0  \mleq{}  partition-mesh(I;p))  supposing  icompact(I)



Date html generated: 2016_05_18-AM-08_56_48
Last ObjectModification: 2015_12_27-PM-11_37_01

Theory : reals


Home Index