Nuprl Lemma : partition-mesh-nonneg
∀[I:Interval]. ∀[p:partition(I)]. (r0 ≤ partition-mesh(I;p)) supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-mesh: partition-mesh(I;p)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
interval: Interval
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
partition-mesh: partition-mesh(I;p)
, 
implies: P 
⇒ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
Lemmas referenced : 
frs-mesh-nonneg, 
full-partition_wf, 
full-partition-non-dec, 
less_than'_wf, 
rsub_wf, 
partition-mesh_wf, 
int-to-real_wf, 
real_wf, 
nat_plus_wf, 
partition_wf, 
icompact_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[p:partition(I)].  (r0  \mleq{}  partition-mesh(I;p))  supposing  icompact(I)
Date html generated:
2016_05_18-AM-08_56_48
Last ObjectModification:
2015_12_27-PM-11_37_01
Theory : reals
Home
Index