Nuprl Lemma : frs-mesh-nonneg

[p:ℝ List]. (frs-non-dec(p)  (r0 ≤ frs-mesh(p)))


Proof




Definitions occuring in Statement :  frs-mesh: frs-mesh(p) frs-non-dec: frs-non-dec(L) rleq: x ≤ y int-to-real: r(n) real: list: List uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  frs-mesh: frs-mesh(p) uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T so_apply: x[s] subtype_rel: A ⊆B less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y frs-non-dec: frs-non-dec(L) itermConstant: "const" req_int_terms: t1 ≡ t2
Lemmas referenced :  lt_int_wf length_wf real_wf bool_wf eqtt_to_assert assert_of_lt_int rleq_weakening_equal int-to-real_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf frs-non-dec_wf less_than'_wf rsub_wf rmaximum_wf subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf select_wf int_seg_properties itermAdd_wf int_term_value_add_lemma decidable__lt add-is-int-iff subtract-is-int-iff false_wf int_seg_wf nat_plus_wf list_wf rmaximum_ub rleq_functionality_wrt_implies radd-preserves-rleq radd_wf lelt_wf rleq_functionality real_term_polynomial real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination lambdaEquality independent_pairEquality applyEquality cumulativity setElimination rename int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll addEquality pointwiseFunctionality imageElimination baseApply closedConclusion baseClosed minusEquality axiomEquality dependent_set_memberEquality

Latex:
\mforall{}[p:\mBbbR{}  List].  (frs-non-dec(p)  {}\mRightarrow{}  (r0  \mleq{}  frs-mesh(p)))



Date html generated: 2017_10_03-AM-09_36_07
Last ObjectModification: 2017_07_28-AM-07_53_51

Theory : reals


Home Index