Nuprl Lemma : rexp-approx_wf
∀[x:ℝ]. ∀[k:ℕ]. ∀[N:ℕ+].  (rexp-approx(x;k;N) ∈ ℤ)
Proof
Definitions occuring in Statement : 
rexp-approx: rexp-approx(x;k;N)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rexp-approx: rexp-approx(x;k;N)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
poly-approx_wf, 
int-rdiv_wf, 
fact_wf, 
nat_plus_inc_int_nzero, 
int-to-real_wf, 
nat_plus_wf, 
istype-nat, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (rexp-approx(x;k;N)  \mmember{}  \mBbbZ{})
Date html generated:
2019_10_29-AM-10_38_52
Last ObjectModification:
2019_02_03-PM-09_51_42
Theory : reals
Home
Index