Nuprl Lemma : rexp-approx_wf

[x:ℝ]. ∀[k:ℕ]. ∀[N:ℕ+].  (rexp-approx(x;k;N) ∈ ℤ)


Proof




Definitions occuring in Statement :  rexp-approx: rexp-approx(x;k;N) real: nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rexp-approx: rexp-approx(x;k;N) subtype_rel: A ⊆B
Lemmas referenced :  poly-approx_wf int-rdiv_wf fact_wf nat_plus_inc_int_nzero int-to-real_wf nat_plus_wf istype-nat real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt hypothesis applyEquality natural_numberEquality inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (rexp-approx(x;k;N)  \mmember{}  \mBbbZ{})



Date html generated: 2019_10_29-AM-10_38_52
Last ObjectModification: 2019_02_03-PM-09_51_42

Theory : reals


Home Index