Nuprl Lemma : poly-approx_wf
∀[k:ℕ]. ∀[a:ℕ ⟶ ℝ]. ∀[x:ℝ]. ∀[N:ℕ+].  (poly-approx(a;x;k;N) ∈ ℤ)
Proof
Definitions occuring in Statement : 
poly-approx: poly-approx(a;x;k;N)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
poly-approx: poly-approx(a;x;k;N)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
real: ℝ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
mul_nat_plus, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
poly-approx-aux_wf, 
nat_wf, 
le_wf, 
nat_plus_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nat_plus_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
functionExtensionality, 
divideEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (poly-approx(a;x;k;N)  \mmember{}  \mBbbZ{})
Date html generated:
2018_05_22-PM-02_01_30
Last ObjectModification:
2017_10_25-PM-04_15_51
Theory : reals
Home
Index