Nuprl Lemma : poly-approx-aux_wf

[k:ℕ]. ∀[a:ℕ ⟶ ℝ]. ∀[x:ℝ]. ∀[xM:ℤ]. ∀[M:ℕ+]. ∀[n:ℕ].  (poly-approx-aux(a;x;xM;M;n;k) ∈ ℤ)


Proof




Definitions occuring in Statement :  poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k) real: nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt subtype_rel: A ⊆B real: nat_plus: + has-value: (a)↓ guard: {T} less_than: a < b squash: T less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  int_nzero: -o
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_wf nat_plus_wf real_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_plus_properties itermAdd_wf int_term_value_add_lemma le_wf value-type-has-value int-value-type equal_wf add_nat_plus divide_wf absval_wf itermMultiply_wf int_term_value_mul_lemma set-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base intformeq_wf int_formula_prop_eq_lemma equal-wf-base mul_nat_plus int_entire_a true_wf mul_nzero subtype_rel_sets nequal_wf add-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry functionEquality unionElimination applyEquality functionExtensionality because_Cache dependent_set_memberEquality addEquality callbyvalueReduce multiplyEquality applyLambdaEquality imageMemberEquality baseClosed equalityElimination productElimination promote_hyp instantiate cumulativity divideEquality baseApply closedConclusion addLevel setEquality pointwiseFunctionality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[xM:\mBbbZ{}].  \mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].    (poly-approx-aux(a;x;xM;M;n;k)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_22-PM-02_00_56
Last ObjectModification: 2017_10_25-PM-02_12_35

Theory : reals


Home Index