Nuprl Lemma : poly-approx-aux_wf
∀[k:ℕ]. ∀[a:ℕ ⟶ ℝ]. ∀[x:ℝ]. ∀[xM:ℤ]. ∀[M:ℕ+]. ∀[n:ℕ].  (poly-approx-aux(a;x;xM;M;n;k) ∈ ℤ)
Proof
Definitions occuring in Statement : 
poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k), 
real: ℝ, 
nat_plus: ℕ+, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
poly-approx-aux: poly-approx-aux(a;x;xM;M;n;k), 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
subtype_rel: A ⊆r B, 
real: ℝ, 
nat_plus: ℕ+, 
has-value: (a)↓, 
guard: {T}, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
nat_wf, 
nat_plus_wf, 
real_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_plus_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
le_wf, 
value-type-has-value, 
int-value-type, 
equal_wf, 
add_nat_plus, 
divide_wf, 
absval_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
set-value-type, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
mul_nat_plus, 
int_entire_a, 
true_wf, 
mul_nzero, 
subtype_rel_sets, 
nequal_wf, 
add-is-int-iff, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
unionElimination, 
applyEquality, 
functionExtensionality, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
callbyvalueReduce, 
multiplyEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
divideEquality, 
baseApply, 
closedConclusion, 
addLevel, 
setEquality, 
pointwiseFunctionality
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].  \mforall{}[xM:\mBbbZ{}].  \mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].    (poly-approx-aux(a;x;xM;M;n;k)  \mmember{}  \mBbbZ{})
Date html generated:
2018_05_22-PM-02_00_56
Last ObjectModification:
2017_10_25-PM-02_12_35
Theory : reals
Home
Index