Nuprl Lemma : rexp-of-positive

x:ℝ((r0 < x)  (r1 < e^x))


Proof




Definitions occuring in Statement :  rexp: e^x rless: x < y int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T} uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) rev_implies:  Q rge: x ≥ y
Lemmas referenced :  rless_wf int-to-real_wf real_wf radd_wf rexp_wf rleq_weakening_rless trivial-rless-radd rless_functionality_wrt_implies rleq_weakening_equal rexp-of-nonneg-stronger
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality because_Cache independent_isectElimination dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}x:\mBbbR{}.  ((r0  <  x)  {}\mRightarrow{}  (r1  <  e\^{}x))



Date html generated: 2016_10_26-AM-09_28_08
Last ObjectModification: 2016_09_19-PM-11_00_07

Theory : reals


Home Index