Nuprl Lemma : rinv-of-rinv

[x:ℝ]. rinv(rinv(x)) supposing x ≠ r0


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) req: y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q guard: {T} prop:
Lemmas referenced :  rinv-neq-zero rmul-inverse-is-rinv rinv_wf2 rmul-rinv2 req_inversion req_witness rneq_wf int-to-real_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache independent_functionElimination hypothesis isectElimination hypothesisEquality independent_isectElimination natural_numberEquality sqequalRule isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  rinv(rinv(x))  =  x  supposing  x  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_12_17
Last ObjectModification: 2015_12_28-AM-00_40_19

Theory : reals


Home Index