Nuprl Lemma : rinv-of-rinv
∀[x:ℝ]. rinv(rinv(x)) = x supposing x ≠ r0
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rinv: rinv(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
rinv-neq-zero, 
rmul-inverse-is-rinv, 
rinv_wf2, 
rmul-rinv2, 
req_inversion, 
req_witness, 
rneq_wf, 
int-to-real_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
natural_numberEquality, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}].  rinv(rinv(x))  =  x  supposing  x  \mneq{}  r0
Date html generated:
2016_05_18-AM-07_12_17
Last ObjectModification:
2015_12_28-AM-00_40_19
Theory : reals
Home
Index