Nuprl Lemma : rmul-inverse-is-rinv

[x:ℝ]. ∀[t:ℝ]. rinv(x) supposing (x t) r1 supposing x ≠ r0


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) req: y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  rmul-one rinv_wf2 req_witness req_wf rmul_wf int-to-real_wf real_wf rneq_wf req_functionality rmul_functionality req_weakening req_inversion req_transitivity rmul-assoc rmul-rinv2 rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis natural_numberEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination productElimination

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[t:\mBbbR{}].  t  =  rinv(x)  supposing  (x  *  t)  =  r1  supposing  x  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_11_42
Last ObjectModification: 2015_12_28-AM-00_40_35

Theory : reals


Home Index