Nuprl Lemma : rv-Gsep
∀n:ℕ. ∀a,b,c:ℝ^n. ∀d:{d:ℝ^n| ¬¬(∃u,v,w:ℝ^n. ((¬(u ≠ v ∧ v ≠ w ∧ (¬u-v-w))) ∧ ab=uv ∧ cd=uw))} .  (a ≠ b 
⇒ c ≠ d)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
false: False
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rv-T-iff, 
rv-T_wf, 
nat_wf, 
rv-congruent_wf, 
rv-between_wf, 
real-vec-sep_wf, 
exists_wf, 
not_wf, 
real-vec_wf, 
set_wf, 
rv-Tsep-alt
Rules used in proof : 
levelHypothesis, 
impliesLevelFunctionality, 
existsLevelFunctionality, 
andLevelFunctionality, 
independent_pairFormation, 
productElimination, 
existsFunctionality, 
impliesFunctionality, 
addLevel, 
voidElimination, 
productEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
independent_functionElimination, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.  \mforall{}d:\{d:\mBbbR{}\^{}n|  \mneg{}\mneg{}(\mexists{}u,v,w:\mBbbR{}\^{}n.  ((\mneg{}(u  \mneq{}  v  \mwedge{}  v  \mneq{}  w  \mwedge{}  (\mneg{}u-v-w)))  \mwedge{}  ab=uv  \mwedge{}  cd=uw))\}  .
    (a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)
Date html generated:
2016_10_28-AM-07_30_16
Last ObjectModification:
2016_10_26-PM-06_46_07
Theory : reals
Home
Index