Nuprl Lemma : rv-Gsep

n:ℕ. ∀a,b,c:ℝ^n. ∀d:{d:ℝ^n| ¬¬(∃u,v,w:ℝ^n. ((¬(u ≠ v ∧ v ≠ w ∧ u-v-w))) ∧ ab=uv ∧ cd=uw))} .  (a ≠  c ≠ d)


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q false: False not: ¬A exists: x:A. B[x] so_apply: x[s] and: P ∧ Q prop: so_lambda: λ2x.t[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  rv-T-iff rv-T_wf nat_wf rv-congruent_wf rv-between_wf real-vec-sep_wf exists_wf not_wf real-vec_wf set_wf rv-Tsep-alt
Rules used in proof :  levelHypothesis impliesLevelFunctionality existsLevelFunctionality andLevelFunctionality independent_pairFormation productElimination existsFunctionality impliesFunctionality addLevel voidElimination productEquality because_Cache lambdaEquality sqequalRule isectElimination independent_functionElimination rename setElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.  \mforall{}d:\{d:\mBbbR{}\^{}n|  \mneg{}\mneg{}(\mexists{}u,v,w:\mBbbR{}\^{}n.  ((\mneg{}(u  \mneq{}  v  \mwedge{}  v  \mneq{}  w  \mwedge{}  (\mneg{}u-v-w)))  \mwedge{}  ab=uv  \mwedge{}  cd=uw))\}  .
    (a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)



Date html generated: 2016_10_28-AM-07_30_16
Last ObjectModification: 2016_10_26-PM-06_46_07

Theory : reals


Home Index