Nuprl Lemma : rv-congruent-preserves-sep
∀n:ℕ. ∀a,b,c,d:ℝ^n.  (ab=cd 
⇒ a ≠ b 
⇒ c ≠ d)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-congruent: ab=cd
, 
real-vec-sep: a ≠ b
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
real-vec-sep_wf, 
rv-congruent_wf, 
real-vec_wf, 
nat_wf, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
rless_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (ab=cd  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)
Date html generated:
2016_10_26-AM-10_31_11
Last ObjectModification:
2016_09_25-PM-01_13_28
Theory : reals
Home
Index