Nuprl Lemma : rv-congruent-preserves-sep

n:ℕ. ∀a,b,c,d:ℝ^n.  (ab=cd  a ≠  c ≠ d)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rv-congruent: ab=cd real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-congruent: ab=cd real-vec-sep: a ≠ b member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  real-vec-sep_wf rv-congruent_wf real-vec_wf nat_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf rless_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule because_Cache dependent_functionElimination independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (ab=cd  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  c  \mneq{}  d)



Date html generated: 2016_10_26-AM-10_31_11
Last ObjectModification: 2016_09_25-PM-01_13_28

Theory : reals


Home Index