Nuprl Lemma : rv-ge_wf
∀[n:ℕ]. ∀[c,d,a,b:ℝ^n].  (cd ≥ ab ∈ ℙ)
Proof
Definitions occuring in Statement : 
rv-ge: cd ≥ ab
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
rv-ge: cd ≥ ab
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
rv-congruent_wf, 
rv-between_wf, 
real-vec-sep_wf, 
real-vec_wf, 
exists_wf, 
not_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
productEquality, 
because_Cache, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[c,d,a,b:\mBbbR{}\^{}n].    (cd  \mgeq{}  ab  \mmember{}  \mBbbP{})
Date html generated:
2016_10_28-AM-07_37_35
Last ObjectModification:
2016_10_27-PM-01_23_09
Theory : reals
Home
Index