Nuprl Lemma : rv-ge_wf

[n:ℕ]. ∀[c,d,a,b:ℝ^n].  (cd ≥ ab ∈ ℙ)


Proof




Definitions occuring in Statement :  rv-ge: cd ≥ ab real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] and: P ∧ Q prop: so_lambda: λ2x.t[x] rv-ge: cd ≥ ab member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf rv-congruent_wf rv-between_wf real-vec-sep_wf real-vec_wf exists_wf not_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality productEquality because_Cache lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[c,d,a,b:\mBbbR{}\^{}n].    (cd  \mgeq{}  ab  \mmember{}  \mBbbP{})



Date html generated: 2016_10_28-AM-07_37_35
Last ObjectModification: 2016_10_27-PM-01_23_09

Theory : reals


Home Index