Nuprl Lemma : rv-pos-angle-shift

n:ℕ. ∀a,b,c:ℝ^n.  (rv-pos-angle(n;a;b;c)  (∀z:ℝ^n. (z ≠  rv-pos-angle(n;a;b;z))  rv-pos-angle(n;z;b;c))))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n nat: all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T rless: x < y sq_exists: x:{A| B[x]} real-vec-sep: a ≠ b prop: uall: [x:A]. B[x] exists: x:A. B[x] and: P ∧ Q uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  not-rv-pos-angle not_wf rv-pos-angle_wf real-vec-sep_wf real-vec_wf nat_wf rv-pos-angle-implies-separated2 rv-pos-angle-linearity real-vec-add_wf real-vec-mul_wf real-vec-sub_wf rv-pos-angle_functionality req-vec_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis isectElimination productElimination because_Cache independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.
    (rv-pos-angle(n;a;b;c)  {}\mRightarrow{}  (\mforall{}z:\mBbbR{}\^{}n.  (z  \mneq{}  b  {}\mRightarrow{}  (\mneg{}rv-pos-angle(n;a;b;z))  {}\mRightarrow{}  rv-pos-angle(n;z;b;c))))



Date html generated: 2017_10_03-AM-11_05_05
Last ObjectModification: 2017_03_02-PM-05_12_24

Theory : reals


Home Index