Nuprl Lemma : rv-pos-angle_functionality
∀n:ℕ. ∀a1,b1,c1,a2,b2,c2:ℝ^n.
  (req-vec(n;a1;a2) ⇒ req-vec(n;b1;b2) ⇒ req-vec(n;c1;c2) ⇒ {rv-pos-angle(n;a1;b1;c1) ⇐⇒ rv-pos-angle(n;a2;b2;c2)})
Proof
Definitions occuring in Statement : 
rv-pos-angle: rv-pos-angle(n;a;b;c), 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
nat: ℕ, 
guard: {T}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rv-pos-angle: rv-pos-angle(n;a;b;c), 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
uimplies: b supposing a
Lemmas referenced : 
rv-pos-angle_wf, 
req-vec_wf, 
real-vec_wf, 
nat_wf, 
rabs_wf, 
dot-product_wf, 
real-vec-sub_wf, 
rmul_wf, 
real-vec-norm_wf, 
rless_functionality, 
rabs_functionality, 
dot-product_functionality, 
real-vec-sub_functionality, 
rmul_functionality, 
real-vec-norm_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,b1,c1,a2,b2,c2:\mBbbR{}\^{}n.
    (req-vec(n;a1;a2)
    {}\mRightarrow{}  req-vec(n;b1;b2)
    {}\mRightarrow{}  req-vec(n;c1;c2)
    {}\mRightarrow{}  \{rv-pos-angle(n;a1;b1;c1)  \mLeftarrow{}{}\mRightarrow{}  rv-pos-angle(n;a2;b2;c2)\})
 Date html generated: 
2017_10_03-AM-10_54_40
 Last ObjectModification: 
2017_03_01-PM-09_16_54
Theory : reals
Home
Index