Nuprl Lemma : radd*_functionality
∀[x,y,u,v:ℝ*].  (x = y ⇒ u = v ⇒ x + u = y + v)
Proof
Definitions occuring in Statement : 
radd*: x + y, 
req*: x = y, 
real*: ℝ*, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
member: t ∈ T, 
radd*: x + y, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
radd_functionality, 
req_functionality, 
req*_weakening, 
rfun*2_functionality, 
req*_functionality, 
req_weakening, 
req_wf, 
req_witness, 
real_wf, 
radd_wf, 
rfun*2_wf, 
real*_wf, 
req*_wf
Rules used in proof : 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
productEquality, 
independent_functionElimination, 
sqequalRule, 
productElimination, 
lambdaEquality, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x,y,u,v:\mBbbR{}*].    (x  =  y  {}\mRightarrow{}  u  =  v  {}\mRightarrow{}  x  +  u  =  y  +  v)
Date html generated:
2018_05_22-PM-03_16_06
Last ObjectModification:
2018_05_21-AM-00_00_47
Theory : reals_2
Home
Index