Nuprl Lemma : rleq*_weakening_equal
∀[x,y:ℝ*].  ((x = y ∈ ℝ*) ⇒ x ≤ y)
Proof
Definitions occuring in Statement : 
rleq*: x ≤ y, 
real*: ℝ*, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
rleq*: x ≤ y, 
rrel*: R*(x,y), 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
all: ∀x:A. B[x], 
real*: ℝ*, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
rleq*_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
false_wf, 
le_wf, 
rleq_weakening_equal, 
subtype_rel_self, 
nat_wf, 
int_upper_wf, 
all_wf, 
rleq_wf, 
int_upper_subtype_nat, 
equal_wf, 
real*_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename
Latex:
\mforall{}[x,y:\mBbbR{}*].    ((x  =  y)  {}\mRightarrow{}  x  \mleq{}  y)
Date html generated:
2018_05_22-PM-03_19_54
Last ObjectModification:
2017_10_06-PM-05_13_34
Theory : reals_2
Home
Index