Nuprl Lemma : rstar-radd
∀[x,y:ℝ]. (x)* + (y)* = (x + y)*
Proof
Definitions occuring in Statement :
rstar: (x)*
,
radd*: x + y
,
req*: x = y
,
radd: a + b
,
real: ℝ
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
req*: x = y
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
all: ∀x:A. B[x]
,
rstar: (x)*
,
radd*: x + y
,
rfun*2: f*(x;y)
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
Lemmas referenced :
false_wf,
le_wf,
req_weakening,
radd_wf,
int_upper_wf,
all_wf,
req_wf,
radd*_wf,
rstar_wf,
int_upper_subtype_nat,
real_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
dependent_pairFormation,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
lambdaFormation,
hypothesis,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
because_Cache,
independent_isectElimination,
setElimination,
rename,
lambdaEquality,
applyEquality
Latex:
\mforall{}[x,y:\mBbbR{}]. (x)* + (y)* = (x + y)*
Date html generated:
2018_05_22-PM-03_18_34
Last ObjectModification:
2017_10_06-PM-06_24_40
Theory : reals_2
Home
Index