Nuprl Lemma : rstar_functionality
∀[x,y:ℝ].  (x)* = (y)* supposing x = y
Proof
Definitions occuring in Statement : 
rstar: (x)*, 
req*: x = y, 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
implies: P ⇒ Q, 
req*: x = y, 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
all: ∀x:A. B[x], 
rstar: (x)*, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s]
Lemmas referenced : 
req_witness, 
false_wf, 
le_wf, 
int_upper_wf, 
all_wf, 
req_wf, 
rstar_wf, 
int_upper_subtype_nat, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
setElimination, 
because_Cache, 
lambdaEquality, 
applyEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    (x)*  =  (y)*  supposing  x  =  y
Date html generated:
2018_05_22-PM-03_18_00
Last ObjectModification:
2017_10_06-PM-06_27_59
Theory : reals_2
Home
Index