Nuprl Lemma : counit-unit-adjunction_wf
∀[A,B:SmallCategory].  ∀F:Functor(A;B). ∀G:Functor(B;A).  (F -| G ∈ Type)
Proof
Definitions occuring in Statement : 
counit-unit-adjunction: F -| G
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
counit-unit-adjunction: F -| G
, 
member: t ∈ T
, 
nat-trans: nat-trans(C;D;F;G)
, 
id_functor: 1
, 
functor-comp: functor-comp(F;G)
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pi2: snd(t)
Lemmas referenced : 
cat-functor_wf, 
small-category_wf, 
nat-trans_wf, 
functor-comp_wf, 
id_functor_wf, 
ob_mk_functor_lemma, 
arrow_mk_functor_lemma, 
counit-unit-equations_wf, 
cat-ob_wf, 
cat-arrow_wf, 
functor-ob_wf, 
pi1_wf_top, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
setEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
productEquality, 
productElimination, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairEquality, 
functionExtensionality, 
applyEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[A,B:SmallCategory].    \mforall{}F:Functor(A;B).  \mforall{}G:Functor(B;A).    (F  -|  G  \mmember{}  Type)
Date html generated:
2017_10_05-AM-00_51_47
Last ObjectModification:
2017_07_28-AM-09_20_38
Theory : small!categories
Home
Index