Nuprl Lemma : counit-unit-adjunction_wf

[A,B:SmallCategory].  ∀F:Functor(A;B). ∀G:Functor(B;A).  (F -| G ∈ Type)


Proof




Definitions occuring in Statement :  counit-unit-adjunction: -| G cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] counit-unit-adjunction: -| G member: t ∈ T nat-trans: nat-trans(C;D;F;G) id_functor: 1 functor-comp: functor-comp(F;G) top: Top so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: pi2: snd(t)
Lemmas referenced :  cat-functor_wf small-category_wf nat-trans_wf functor-comp_wf id_functor_wf ob_mk_functor_lemma arrow_mk_functor_lemma counit-unit-equations_wf cat-ob_wf cat-arrow_wf functor-ob_wf pi1_wf_top equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation setEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis hypothesisEquality productEquality productElimination setElimination rename sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairEquality functionExtensionality applyEquality functionEquality equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[A,B:SmallCategory].    \mforall{}F:Functor(A;B).  \mforall{}G:Functor(B;A).    (F  -|  G  \mmember{}  Type)



Date html generated: 2017_10_05-AM-00_51_47
Last ObjectModification: 2017_07_28-AM-09_20_38

Theory : small!categories


Home Index