Nuprl Lemma : counit-unit-adjunction_wf
∀[A,B:SmallCategory]. ∀F:Functor(A;B). ∀G:Functor(B;A). (F -| G ∈ Type)
Proof
Definitions occuring in Statement :
counit-unit-adjunction: F -| G
,
cat-functor: Functor(C1;C2)
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
counit-unit-adjunction: F -| G
,
member: t ∈ T
,
nat-trans: nat-trans(C;D;F;G)
,
id_functor: 1
,
functor-comp: functor-comp(F;G)
,
top: Top
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
so_apply: x[s1;s2;s3]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
prop: ℙ
,
pi2: snd(t)
Lemmas referenced :
cat-functor_wf,
small-category_wf,
nat-trans_wf,
functor-comp_wf,
id_functor_wf,
ob_mk_functor_lemma,
arrow_mk_functor_lemma,
counit-unit-equations_wf,
cat-ob_wf,
cat-arrow_wf,
functor-ob_wf,
pi1_wf_top,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
setEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesis,
hypothesisEquality,
productEquality,
productElimination,
setElimination,
rename,
sqequalRule,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairEquality,
functionExtensionality,
applyEquality,
functionEquality,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination
Latex:
\mforall{}[A,B:SmallCategory]. \mforall{}F:Functor(A;B). \mforall{}G:Functor(B;A). (F -| G \mmember{} Type)
Date html generated:
2017_10_05-AM-00_51_47
Last ObjectModification:
2017_07_28-AM-09_20_38
Theory : small!categories
Home
Index