Nuprl Lemma : discrete-groupoid_wf

[X:Type]. (discrete-groupoid(X) ∈ Groupoid)


Proof




Definitions occuring in Statement :  discrete-groupoid: discrete-groupoid(X) groupoid: Groupoid uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-groupoid: discrete-groupoid(X) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B cat-comp: cat-comp(C) pi2: snd(t) discrete-cat: discrete-cat(X) mk-cat: mk-cat it: cat-id: cat-id(C) pi1: fst(t) top: Top subtype_rel: A ⊆B unit: Unit implies:  Q prop:
Lemmas referenced :  mk-groupoid_wf discrete-cat_wf cat-arrow_wf cat-ob_wf cat-id_wf cat_arrow_triple_lemma cat_ob_pair_lemma it_wf equal_subtype equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality applyEquality because_Cache independent_isectElimination lambdaFormation independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality intEquality natural_numberEquality baseClosed

Latex:
\mforall{}[X:Type].  (discrete-groupoid(X)  \mmember{}  Groupoid)



Date html generated: 2017_01_19-PM-02_56_04
Last ObjectModification: 2017_01_13-PM-00_14_38

Theory : small!categories


Home Index