Nuprl Lemma : discrete-groupoid_wf
∀[X:Type]. (discrete-groupoid(X) ∈ Groupoid)
Proof
Definitions occuring in Statement : 
discrete-groupoid: discrete-groupoid(X)
, 
groupoid: Groupoid
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
discrete-groupoid: discrete-groupoid(X)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
cat-comp: cat-comp(C)
, 
pi2: snd(t)
, 
discrete-cat: discrete-cat(X)
, 
mk-cat: mk-cat, 
it: ⋅
, 
cat-id: cat-id(C)
, 
pi1: fst(t)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
unit: Unit
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
mk-groupoid_wf, 
discrete-cat_wf, 
cat-arrow_wf, 
cat-ob_wf, 
cat-id_wf, 
cat_arrow_triple_lemma, 
cat_ob_pair_lemma, 
it_wf, 
equal_subtype, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
natural_numberEquality, 
baseClosed
Latex:
\mforall{}[X:Type].  (discrete-groupoid(X)  \mmember{}  Groupoid)
Date html generated:
2017_01_19-PM-02_56_04
Last ObjectModification:
2017_01_13-PM-00_14_38
Theory : small!categories
Home
Index