Nuprl Lemma : functor-arrow-prod-id
∀[A,B,C:SmallCategory]. ∀[F:Functor(A × B;C)]. ∀[a:cat-ob(A)]. ∀[b:cat-ob(B)].
  ((arrow(F) <a, b> <a, b> <cat-id(A) a, cat-id(B) b>) = (cat-id(C) (ob(F) <a, b>)) ∈ (cat-arrow(C) (ob(F) <a, b>) (ob(F\000C) <a, b>)))
Proof
Definitions occuring in Statement : 
product-cat: A × B, 
functor-arrow: arrow(F), 
functor-ob: ob(F), 
cat-functor: Functor(C1;C2), 
cat-id: cat-id(C), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
small-category: SmallCategory, 
uall: ∀[x:A]. B[x], 
apply: f a, 
pair: <a, b>, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
prop: ℙ, 
all: ∀x:A. B[x], 
top: Top, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
pi1: fst(t), 
pi2: snd(t)
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
cat-arrow_wf, 
functor-ob_wf, 
product-cat_wf, 
ob_product_lemma, 
functor-arrow-id, 
cat-id_wf, 
iff_weakening_equal, 
cat-ob_wf, 
cat-functor_wf, 
small-category_wf, 
id_prod_cat_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[A,B,C:SmallCategory].  \mforall{}[F:Functor(A  \mtimes{}  B;C)].  \mforall{}[a:cat-ob(A)].  \mforall{}[b:cat-ob(B)].
    ((arrow(F)  <a,  b>  <a,  b>  <cat-id(A)  a,  cat-id(B)  b>)  =  (cat-id(C)  (ob(F)  <a,  b>)))
Date html generated:
2017_10_05-AM-00_47_57
Last ObjectModification:
2017_07_28-AM-09_19_51
Theory : small!categories
Home
Index