Nuprl Lemma : functor-arrow-prod-id

[A,B,C:SmallCategory]. ∀[F:Functor(A × B;C)]. ∀[a:cat-ob(A)]. ∀[b:cat-ob(B)].
  ((arrow(F) <a, b> <a, b> <cat-id(A) a, cat-id(B) b>(cat-id(C) (ob(F) <a, b>)) ∈ (cat-arrow(C) (ob(F) <a, b>(ob(F\000C) <a, b>)))


Proof




Definitions occuring in Statement :  product-cat: A × B functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] apply: a pair: <a, b> equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: all: x:A. B[x] top: Top true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q pi1: fst(t) pi2: snd(t)
Lemmas referenced :  equal_wf squash_wf true_wf cat-arrow_wf functor-ob_wf product-cat_wf ob_product_lemma functor-arrow-id cat-id_wf iff_weakening_equal cat-ob_wf cat-functor_wf small-category_wf id_prod_cat_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[A,B,C:SmallCategory].  \mforall{}[F:Functor(A  \mtimes{}  B;C)].  \mforall{}[a:cat-ob(A)].  \mforall{}[b:cat-ob(B)].
    ((arrow(F)  <a,  b>  <a,  b>  <cat-id(A)  a,  cat-id(B)  b>)  =  (cat-id(C)  (ob(F)  <a,  b>)))



Date html generated: 2017_10_05-AM-00_47_57
Last ObjectModification: 2017_07_28-AM-09_19_51

Theory : small!categories


Home Index