Nuprl Lemma : Sierpinski-cases

[x:Sierpinski]. ((¬(x = ⊤ ∈ Sierpinski)) ∧ (x = ⊥ ∈ Sierpinski))))


Proof




Definitions occuring in Statement :  Sierpinski: Sierpinski Sierpinski-top: Sierpinski-bottom: uall: [x:A]. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False and: P ∧ Q prop: subtype_rel: A ⊆B
Lemmas referenced :  not-Sierpinski-top and_wf not_wf equal_wf Sierpinski_wf Sierpinski-top_wf subtype-Sierpinski Sierpinski-bottom_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination lemma_by_obid isectElimination hypothesisEquality independent_functionElimination hypothesis voidElimination because_Cache applyEquality sqequalRule lambdaEquality dependent_functionElimination

Latex:
\mforall{}[x:Sierpinski].  (\mneg{}((\mneg{}(x  =  \mtop{}))  \mwedge{}  (\mneg{}(x  =  \mbot{}))))



Date html generated: 2019_10_31-AM-06_35_34
Last ObjectModification: 2015_12_28-AM-11_21_46

Theory : synthetic!topology


Home Index