Nuprl Lemma : in-open-isect

[X:Type]. ∀[x:X]. ∀[A,B:Open(X)].  (x ∈ open-isect(A;B) ⇐⇒ x ∈ A ∧ x ∈ B)


Proof




Definitions occuring in Statement :  in-open: x ∈ A open-isect: open-isect(A;B) Open: Open(X) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q open-isect: open-isect(A;B) in-open: x ∈ A Open: Open(X) prop: rev_implies:  Q cand: c∧ B
Lemmas referenced :  sp-meet-is-top in-open_wf open-isect_wf and_wf Open_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation sqequalHypSubstitution sqequalRule lemma_by_obid isectElimination thin applyEquality hypothesisEquality hypothesis productElimination independent_functionElimination because_Cache equalityTransitivity equalitySymmetry independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x:X].  \mforall{}[A,B:Open(X)].    (x  \mmember{}  open-isect(A;B)  \mLeftarrow{}{}\mRightarrow{}  x  \mmember{}  A  \mwedge{}  x  \mmember{}  B)



Date html generated: 2019_10_31-AM-07_18_59
Last ObjectModification: 2015_12_28-AM-11_21_44

Theory : synthetic!topology


Home Index