Nuprl Lemma : in-open-isect
∀[X:Type]. ∀[x:X]. ∀[A,B:Open(X)].  (x ∈ open-isect(A;B) 
⇐⇒ x ∈ A ∧ x ∈ B)
Proof
Definitions occuring in Statement : 
in-open: x ∈ A
, 
open-isect: open-isect(A;B)
, 
Open: Open(X)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
open-isect: open-isect(A;B)
, 
in-open: x ∈ A
, 
Open: Open(X)
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
sp-meet-is-top, 
in-open_wf, 
open-isect_wf, 
and_wf, 
Open_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[x:X].  \mforall{}[A,B:Open(X)].    (x  \mmember{}  open-isect(A;B)  \mLeftarrow{}{}\mRightarrow{}  x  \mmember{}  A  \mwedge{}  x  \mmember{}  B)
Date html generated:
2019_10_31-AM-07_18_59
Last ObjectModification:
2015_12_28-AM-11_21_44
Theory : synthetic!topology
Home
Index