Nuprl Lemma : sp-meet-is-top

[x,y:Sierpinski].  (x ∧ = ⊤ ∈ Sierpinski ⇐⇒ (x = ⊤ ∈ Sierpinski) ∧ (y = ⊤ ∈ Sierpinski))


Proof




Definitions occuring in Statement :  sp-meet: f ∧ g Sierpinski: Sierpinski Sierpinski-top: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T implies:  Q Sierpinski: Sierpinski quotient: x,y:A//B[x; y] prop: rev_implies:  Q sp-meet: f ∧ g cand: c∧ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] squash: T true: True subtype_rel: A ⊆B guard: {T} Sierpinski-bottom: bfalse: ff band: p ∧b q ifthenelse: if then else fi  so_lambda: λ2x.t[x] so_apply: x[s] top: Top false: False Sierpinski-top: btrue: tt uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) assert: b nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A coded-pair: coded-pair(m) code-pair: code-pair(a;b) triangular-num: t(n) tsqrt: tsqrt(n) isqrt: isqrt(x) integer-sqrt-ext genrec-ap: genrec-ap le_int: i ≤j bnot: ¬bb lt_int: i <j subtract: m
Lemmas referenced :  Sierpinski-unequal-1 Sierpinski_wf equal-wf-base iff_wf equal-wf-T-base nat_wf bool_wf sp-meet_wf quotient-member-eq two-class-equiv-rel Sierpinski-bottom_wf equal_wf coded-pair_wf band_wf squash_wf true_wf iff_weakening_equal spread_to_pi12 top_wf subtype_rel_product bfalse_wf member_wf band_ff_simp btrue_wf equal-Sierpinski-bottom code-pair_wf false_wf le_wf assert_of_bnot integer-sqrt-ext
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin isect_memberFormation independent_pairFormation lambdaFormation pointwiseFunctionalityForEquality hypothesis sqequalRule pertypeElimination productEquality isectElimination because_Cache hypothesisEquality equalityTransitivity equalitySymmetry baseClosed functionEquality equalityElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality independent_isectElimination independent_functionElimination applyEquality imageElimination equalityUniverse levelHypothesis spreadEquality functionExtensionality natural_numberEquality imageMemberEquality voidElimination voidEquality universeEquality dependent_set_memberEquality

Latex:
\mforall{}[x,y:Sierpinski].    (x  \mwedge{}  y  =  \mtop{}  \mLeftarrow{}{}\mRightarrow{}  (x  =  \mtop{})  \mwedge{}  (y  =  \mtop{}))



Date html generated: 2019_10_31-AM-06_35_51
Last ObjectModification: 2017_07_28-AM-09_12_00

Theory : synthetic!topology


Home Index