Nuprl Lemma : sp-meet_wf
∀[f,g:Sierpinski].  (f ∧ g ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
sp-meet: f ∧ g
, 
Sierpinski: Sierpinski
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Sierpinski: Sierpinski
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
sp-meet: f ∧ g
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
btrue: tt
, 
assert: ↑b
, 
true: True
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
Sierpinski_wf, 
quotient-member-eq, 
nat_wf, 
bool_wf, 
iff_wf, 
equal-wf-T-base, 
two-class-equiv-rel, 
Sierpinski-bottom_wf, 
coded-pair_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
bfalse_wf, 
istype-nat, 
equal-Sierpinski-bottom, 
istype-assert, 
bool_cases_sqequal, 
assert_elim, 
not_assert_elim, 
btrue_neq_bfalse, 
code-pair_wf, 
iff_weakening_uiff, 
assert_wf, 
assert_functionality_wrt_uiff, 
coded-code-pair
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
thin, 
productElimination, 
isectElimination, 
functionEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
applyEquality, 
unionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
equalityIstype, 
independent_pairFormation, 
rename, 
voidElimination, 
sqequalBase, 
productIsType, 
functionIsType, 
universeIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
baseApply, 
closedConclusion, 
applyLambdaEquality, 
setElimination, 
independent_pairEquality, 
spreadEquality
Latex:
\mforall{}[f,g:Sierpinski].    (f  \mwedge{}  g  \mmember{}  Sierpinski)
Date html generated:
2019_10_31-AM-06_35_41
Last ObjectModification:
2018_12_13-PM-03_00_20
Theory : synthetic!topology
Home
Index