Nuprl Lemma : sp-meet_wf

[f,g:Sierpinski].  (f ∧ g ∈ Sierpinski)


Proof




Definitions occuring in Statement :  sp-meet: f ∧ g Sierpinski: Sierpinski uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Sierpinski: Sierpinski quotient: x,y:A//B[x; y] and: P ∧ Q sp-meet: f ∧ g so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a iff: ⇐⇒ Q all: x:A. B[x] implies:  Q or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) bfalse: ff band: p ∧b q ifthenelse: if then else fi  rev_uimplies: rev_uimplies(P;Q) not: ¬A false: False rev_implies:  Q btrue: tt assert: b true: True subtype_rel: A ⊆B
Lemmas referenced :  Sierpinski_wf quotient-member-eq nat_wf bool_wf iff_wf equal-wf-T-base two-class-equiv-rel Sierpinski-bottom_wf coded-pair_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert band_wf btrue_wf bfalse_wf istype-nat equal-Sierpinski-bottom istype-assert bool_cases_sqequal assert_elim not_assert_elim btrue_neq_bfalse code-pair_wf iff_weakening_uiff assert_wf assert_functionality_wrt_uiff coded-code-pair
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid hypothesis sqequalRule pertypeElimination promote_hyp thin productElimination isectElimination functionEquality lambdaEquality_alt hypothesisEquality baseClosed because_Cache inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination lambdaFormation_alt applyEquality unionElimination instantiate cumulativity independent_functionElimination equalityIstype independent_pairFormation rename voidElimination sqequalBase productIsType functionIsType universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies natural_numberEquality dependent_set_memberEquality_alt baseApply closedConclusion applyLambdaEquality setElimination independent_pairEquality spreadEquality

Latex:
\mforall{}[f,g:Sierpinski].    (f  \mwedge{}  g  \mmember{}  Sierpinski)



Date html generated: 2019_10_31-AM-06_35_41
Last ObjectModification: 2018_12_13-PM-03_00_20

Theory : synthetic!topology


Home Index