Nuprl Lemma : overt_wf

[X:Type]. (Overt(X) ∈ ℙ')


Proof




Definitions occuring in Statement :  overt: Overt(X) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T overt: Overt(X) so_lambda: λ2x.t[x] subtype_rel: A ⊆B Open: Open(X) so_apply: x[s] prop:
Lemmas referenced :  uall_wf exists_wf Open_wf all_wf iff_wf sp-le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality lambdaEquality functionEquality productEquality cumulativity hypothesisEquality hypothesis because_Cache applyEquality independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[X:Type].  (Overt(X)  \mmember{}  \mBbbP{}')



Date html generated: 2019_10_31-AM-07_19_06
Last ObjectModification: 2015_12_28-AM-11_21_16

Theory : synthetic!topology


Home Index