Nuprl Lemma : overt_wf
∀[X:Type]. (Overt(X) ∈ ℙ')
Proof
Definitions occuring in Statement : 
overt: Overt(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
overt: Overt(X)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
Open: Open(X)
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
uall_wf, 
exists_wf, 
Open_wf, 
all_wf, 
iff_wf, 
sp-le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
lambdaEquality, 
functionEquality, 
productEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[X:Type].  (Overt(X)  \mmember{}  \mBbbP{}')
Date html generated:
2019_10_31-AM-07_19_06
Last ObjectModification:
2015_12_28-AM-11_21_16
Theory : synthetic!topology
Home
Index