Nuprl Lemma : sp-meet-assoc

[x,y,z:Sierpinski].  (x ∧ y ∧ x ∧ y ∧ z ∈ Sierpinski)


Proof




Definitions occuring in Statement :  sp-meet: f ∧ g Sierpinski: Sierpinski uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q implies:  Q cand: c∧ B rev_implies:  Q prop:
Lemmas referenced :  Sierpinski-equal2 sp-meet_wf sp-meet-is-top equal-wf-T-base Sierpinski_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_pairFormation lambdaFormation addLevel independent_functionElimination levelHypothesis promote_hyp andLevelFunctionality because_Cache productEquality baseClosed sqequalRule isect_memberEquality axiomEquality

Latex:
\mforall{}[x,y,z:Sierpinski].    (x  \mwedge{}  y  \mwedge{}  z  =  x  \mwedge{}  y  \mwedge{}  z)



Date html generated: 2019_10_31-AM-06_36_35
Last ObjectModification: 2017_07_28-AM-09_12_16

Theory : synthetic!topology


Home Index