Nuprl Lemma : sp-meet-assoc
∀[x,y,z:Sierpinski]. (x ∧ y ∧ z = x ∧ y ∧ z ∈ Sierpinski)
Proof
Definitions occuring in Statement :
sp-meet: f ∧ g
,
Sierpinski: Sierpinski
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
cand: A c∧ B
,
rev_implies: P
⇐ Q
,
prop: ℙ
Lemmas referenced :
Sierpinski-equal2,
sp-meet_wf,
sp-meet-is-top,
equal-wf-T-base,
Sierpinski_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
addLevel,
independent_functionElimination,
levelHypothesis,
promote_hyp,
andLevelFunctionality,
because_Cache,
productEquality,
baseClosed,
sqequalRule,
isect_memberEquality,
axiomEquality
Latex:
\mforall{}[x,y,z:Sierpinski]. (x \mwedge{} y \mwedge{} z = x \mwedge{} y \mwedge{} z)
Date html generated:
2019_10_31-AM-06_36_35
Last ObjectModification:
2017_07_28-AM-09_12_16
Theory : synthetic!topology
Home
Index