Nuprl Lemma : sp-meet-top
∀[x:Sierpinski]. (x ∧ ⊤ = x ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
sp-meet: f ∧ g, 
Sierpinski: Sierpinski, 
Sierpinski-top: ⊤, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
cand: A c∧ B
Lemmas referenced : 
Sierpinski-equal2, 
sp-meet_wf, 
Sierpinski-top_wf, 
subtype-Sierpinski, 
sp-meet-is-top, 
equal_wf, 
Sierpinski_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[x:Sierpinski].  (x  \mwedge{}  \mtop{}  =  x)
Date html generated:
2019_10_31-AM-06_36_39
Last ObjectModification:
2015_12_28-AM-11_20_44
Theory : synthetic!topology
Home
Index