Nuprl Lemma : C_Pointer_wf
∀[to:C_TYPE()]. (C_Pointer(to) ∈ C_TYPE())
Proof
Definitions occuring in Statement : 
C_Pointer: C_Pointer(to), 
C_TYPE: C_TYPE(), 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
C_TYPE: C_TYPE(), 
C_Pointer: C_Pointer(to), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
subtype_rel: A ⊆r B, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
C_TYPEco_size: C_TYPEco_size(p), 
C_TYPE_size: C_TYPE_size(p), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
C_TYPEco-ext, 
ifthenelse_wf, 
eq_atom_wf, 
unit_wf2, 
list_wf, 
C_TYPEco_wf, 
nat_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
C_TYPE_size_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
has-value_wf-partial, 
C_TYPEco_size_wf, 
C_TYPE_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
dependent_set_memberEquality, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
dependent_pairEquality, 
tokenEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
instantiate, 
isectElimination, 
universeEquality, 
productEquality, 
atomEquality, 
voidEquality, 
applyEquality, 
productElimination, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
equalityEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[to:C\_TYPE()].  (C\_Pointer(to)  \mmember{}  C\_TYPE())
 Date html generated: 
2016_05_16-AM-08_44_44
 Last ObjectModification: 
2015_12_28-PM-06_58_19
Theory : C-semantics
Home
Index