Nuprl Lemma : int_seg_equality

[m,n:ℤ]. ∀[x:{m..n-}].  ∀y:ℤy ∈ {m..n-supposing y ∈ ℤ


Proof




Definitions occuring in Statement :  int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q prop:
Lemmas referenced :  and_wf le_wf less_than_wf equal_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality productElimination hypothesis lemma_by_obid isectElimination hypothesisEquality intEquality sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[m,n:\mBbbZ{}].  \mforall{}[x:\{m..n\msupminus{}\}].    \mforall{}y:\mBbbZ{}.  x  =  y  supposing  x  =  y



Date html generated: 2016_05_13-PM-03_32_50
Last ObjectModification: 2015_12_26-AM-09_45_05

Theory : arithmetic


Home Index