Nuprl Lemma : int_seg_equality
∀[m,n:ℤ]. ∀[x:{m..n-}].  ∀y:ℤ. x = y ∈ {m..n-} supposing x = y ∈ ℤ
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
le_wf, 
less_than_wf, 
equal_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
productElimination, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
intEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[m,n:\mBbbZ{}].  \mforall{}[x:\{m..n\msupminus{}\}].    \mforall{}y:\mBbbZ{}.  x  =  y  supposing  x  =  y
Date html generated:
2016_05_13-PM-03_32_50
Last ObjectModification:
2015_12_26-AM-09_45_05
Theory : arithmetic
Home
Index