Nuprl Lemma : homogeneous_wf
∀[R:ℕ ⟶ ℕ ⟶ ℙ]. ∀[n:ℕ]. ∀[s:ℕn ⟶ ℕ].  (homogeneous(R;n;s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
homogeneous: homogeneous(R;n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
homogeneous: homogeneous(R;n;s)
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
strictly-increasing-seq_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
nat_wf, 
all_wf, 
less_than_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
lambdaEquality, 
because_Cache, 
intEquality, 
independent_isectElimination, 
lambdaFormation, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (homogeneous(R;n;s)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_50_04
Last ObjectModification:
2015_12_26-AM-10_17_32
Theory : bar-induction
Home
Index