Nuprl Lemma : homogeneous_wf

[R:ℕ ⟶ ℕ ⟶ ℙ]. ∀[n:ℕ]. ∀[s:ℕn ⟶ ℕ].  (homogeneous(R;n;s) ∈ ℙ)


Proof




Definitions occuring in Statement :  homogeneous: homogeneous(R;n;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T homogeneous: homogeneous(R;n;s) prop: and: P ∧ Q subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q int_seg: {i..j-} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  strictly-increasing-seq_wf subtype_rel_dep_function int_seg_wf nat_wf all_wf less_than_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality natural_numberEquality setElimination rename hypothesis lambdaEquality because_Cache intEquality independent_isectElimination lambdaFormation functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality cumulativity universeEquality

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (homogeneous(R;n;s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_50_04
Last ObjectModification: 2015_12_26-AM-10_17_32

Theory : bar-induction


Home Index