Nuprl Lemma : bor_bnot

[a:Top]. (a ∨bba) a ∨btt)


Proof




Definitions occuring in Statement :  bor: p ∨bq bnot: ¬bb btrue: tt uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  bor: p ∨bq bnot: ¬bb ifthenelse: if then else fi  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ all: x:A. B[x] or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} uiff: uiff(P;Q) and: P ∧ Q btrue: tt bfalse: ff
Lemmas referenced :  assert_of_bnot eqff_to_assert is-exception_wf has-value_wf_base eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases top_wf isl_wf injection-eta
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueDecide sqequalHypSubstitution hypothesis lemma_by_obid dependent_functionElimination equalityTransitivity equalitySymmetry isectElimination because_Cache unionElimination instantiate cumulativity independent_isectElimination independent_functionElimination productElimination sqleReflexivity baseClosed decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion hypothesisEquality sqequalAxiom

Latex:
\mforall{}[a:Top].  (a  \mvee{}\msubb{}(\mneg{}\msubb{}a)  \msim{}  a  \mvee{}\msubb{}tt)



Date html generated: 2016_05_13-PM-03_55_48
Last ObjectModification: 2016_01_14-PM-07_20_49

Theory : bool_1


Home Index