Nuprl Lemma : ifthenelse-prop

b:𝔹. ∀p,q:ℙ'.  (if then else fi  ⇐⇒ ((↑b) ∧ p) ∨ ((¬↑b) ∧ q))


Proof




Definitions occuring in Statement :  assert: b ifthenelse: if then else fi  bool: 𝔹 prop: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q or: P ∨ Q cand: c∧ B prop: rev_implies:  Q not: ¬A true: True false: False bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb
Lemmas referenced :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesisEquality thin introduction extract_by_obid hypothesis sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination sqequalRule independent_pairFormation inlFormation because_Cache independent_functionElimination natural_numberEquality voidElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry inrFormation

Latex:
\mforall{}b:\mBbbB{}.  \mforall{}p,q:\mBbbP{}'.    (if  b  then  p  else  q  fi    \mLeftarrow{}{}\mRightarrow{}  ((\muparrow{}b)  \mwedge{}  p)  \mvee{}  ((\mneg{}\muparrow{}b)  \mwedge{}  q))



Date html generated: 2017_04_14-AM-07_32_05
Last ObjectModification: 2017_02_27-PM-02_59_59

Theory : bool_1


Home Index