Nuprl Lemma : ifthenelse-prop
∀b:𝔹. ∀p,q:ℙ'.  (if b then p else q fi  
⇐⇒ ((↑b) ∧ p) ∨ ((¬↑b) ∧ q))
Proof
Definitions occuring in Statement : 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
true: True
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesisEquality, 
thin, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
inlFormation, 
because_Cache, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation
Latex:
\mforall{}b:\mBbbB{}.  \mforall{}p,q:\mBbbP{}'.    (if  b  then  p  else  q  fi    \mLeftarrow{}{}\mRightarrow{}  ((\muparrow{}b)  \mwedge{}  p)  \mvee{}  ((\mneg{}\muparrow{}b)  \mwedge{}  q))
Date html generated:
2017_04_14-AM-07_32_05
Last ObjectModification:
2017_02_27-PM-02_59_59
Theory : bool_1
Home
Index