Nuprl Lemma : subtype_rel_isect2
∀[A,B,C:Type].  uiff(A ⊆r B ⋂ C;(A ⊆r B) ∧ (A ⊆r C))
Proof
Definitions occuring in Statement : 
isect2: T1 ⋂ T2, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
universe: Type
Definitions unfolded in proof : 
isect2: T1 ⋂ T2, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ifthenelse: if b then t else f fi , 
bool: 𝔹, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
btrue: tt, 
bfalse: ff
Lemmas referenced : 
uall_wf, 
bool_wf, 
subtype_rel_wf, 
ifthenelse_wf, 
and_wf, 
iff_weakening_uiff, 
subtype_rel_isect, 
uiff_wf, 
btrue_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesisEquality, 
instantiate, 
universeEquality, 
unionElimination, 
isect_memberEquality, 
because_Cache, 
addLevel, 
independent_isectElimination, 
isectEquality, 
independent_functionElimination, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A,B,C:Type].    uiff(A  \msubseteq{}r  B  \mcap{}  C;(A  \msubseteq{}r  B)  \mwedge{}  (A  \msubseteq{}r  C))
Date html generated:
2016_05_13-PM-03_58_04
Last ObjectModification:
2015_12_26-AM-10_51_33
Theory : bool_1
Home
Index