Nuprl Lemma : subtype_rel_isect2

[A,B,C:Type].  uiff(A ⊆B ⋂ C;(A ⊆B) ∧ (A ⊆C))


Proof




Definitions occuring in Statement :  isect2: T1 ⋂ T2 uiff: uiff(P;Q) subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q universe: Type
Definitions unfolded in proof :  isect2: T1 ⋂ T2 uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] ifthenelse: if then else fi  bool: 𝔹 implies:  Q iff: ⇐⇒ Q rev_implies:  Q btrue: tt bfalse: ff
Lemmas referenced :  uall_wf bool_wf subtype_rel_wf ifthenelse_wf and_wf iff_weakening_uiff subtype_rel_isect uiff_wf btrue_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut independent_pairFormation isect_memberFormation introduction sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis lemma_by_obid isectElimination lambdaEquality hypothesisEquality instantiate universeEquality unionElimination isect_memberEquality because_Cache addLevel independent_isectElimination isectEquality independent_functionElimination cumulativity equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B,C:Type].    uiff(A  \msubseteq{}r  B  \mcap{}  C;(A  \msubseteq{}r  B)  \mwedge{}  (A  \msubseteq{}r  C))



Date html generated: 2016_05_13-PM-03_58_04
Last ObjectModification: 2015_12_26-AM-10_51_33

Theory : bool_1


Home Index