Nuprl Lemma : implies-vdf-eq-append1

A,B:Type. ∀C:A ⟶ B ⟶ Type. ∀f:very-dep-fun(A;B;a,b.C[a;b]). ∀L:(a:A × b:B × C[a;b]) List. ∀a:A. ∀b:B. ∀c:Top.
  (vdf-eq(A;f;L)  (a (f b) ∈ A)  vdf-eq(A;f;L [<a, b, c>]))


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) append: as bs cons: [a b] nil: [] list: List top: Top so_apply: x[s1;s2] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] prop:
Lemmas referenced :  very-dep-fun-subtype vdf-eq-append1 subtype_rel_list top_wf subtype_rel_product vdf-eq-witness vdf-eq_wf istype-top list_wf very-dep-fun_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination Error :memTop,  applyEquality productEquality independent_isectElimination sqequalRule lambdaEquality_alt inhabitedIsType universeIsType because_Cache dependentIntersection_memberEquality axiomEquality equalityIstype dependent_set_memberEquality_alt functionIsType instantiate universeEquality

Latex:
\mforall{}A,B:Type.  \mforall{}C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type.  \mforall{}f:very-dep-fun(A;B;a,b.C[a;b]).  \mforall{}L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List.  \mforall{}a:A.
\mforall{}b:B.  \mforall{}c:Top.
    (vdf-eq(A;f;L)  {}\mRightarrow{}  (a  =  (f  L  b))  {}\mRightarrow{}  vdf-eq(A;f;L  @  [<a,  b,  c>]))



Date html generated: 2020_05_19-PM-09_41_03
Last ObjectModification: 2020_03_09-PM-01_55_13

Theory : co-recursion-2


Home Index