Nuprl Lemma : very-dep-fun-subtype

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[f:very-dep-fun(A;B;a,b.C[a;b])].
  (f ∈ {L:(a:A × b:B × C[a;b]) List| vdf-eq(A;f;L)}  ⟶ B ⟶ A)


Proof




Definitions occuring in Statement :  very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf-eq: vdf-eq(A;f;L) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] all: x:A. B[x] prop: subtype_rel: A ⊆B very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) vdf: vdf(A;B;a,b.C[a; b];n) not: ¬A implies:  Q false: False or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff cons: [a b] ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] decidable: Dec(P) nat: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B
Lemmas referenced :  list_wf vdf-eq_wf very-dep-fun_wf istype-universe length_wf istype-int vdf_wf lt_int_wf assert_wf bnot_wf not_wf less_than_wf istype-less_than istype-assert istype-void bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma le_weakening2 non_neg_length decidable__lt full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_formula_prop_wf length_wf_nat set_subtype_base le_wf int_subtype_base decidable__le intformnot_wf int_formula_prop_not_lemma istype-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut functionExtensionality rename setElimination thin sqequalHypSubstitution hypothesis setEquality extract_by_obid isectElimination productEquality hypothesisEquality applyEquality sqequalRule lambdaEquality_alt universeIsType dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType instantiate universeEquality isectIsType natural_numberEquality because_Cache unionElimination cumulativity independent_isectElimination independent_functionElimination productElimination independent_pairFormation lambdaFormation_alt promote_hyp hypothesis_subsumption Error :memTop,  approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination dependent_set_memberEquality_alt equalityIstype intEquality baseClosed sqequalBase dependentIntersectionEqElimination productIsType

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[f:very-dep-fun(A;B;a,b.C[a;b])].
    (f  \mmember{}  \{L:(a:A  \mtimes{}  b:B  \mtimes{}  C[a;b])  List|  vdf-eq(A;f;L)\}    {}\mrightarrow{}  B  {}\mrightarrow{}  A)



Date html generated: 2020_05_19-PM-09_41_01
Last ObjectModification: 2020_03_05-AM-11_40_26

Theory : co-recursion-2


Home Index