Nuprl Lemma : vdf_wf

[A,B:Type]. ∀[C:A ⟶ B ⟶ Type]. ∀[n:ℤ].  (vdf(A;B;a,b.C[a;b];n) ∈ Type)


Proof




Definitions occuring in Statement :  vdf: vdf(A;B;a,b.C[a; b];n) uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: and: P ∧ Q vdf: vdf(A;B;a,b.C[a; b];n) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  vdf-wf decidable__le istype-int istype-universe istype-le lt_int_wf eqtt_to_assert assert_of_lt_int list_wf equal-wf-base length_wf_nat set_subtype_base le_wf int_subtype_base eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination natural_numberEquality unionElimination functionIsType universeIsType inhabitedIsType instantiate universeEquality dependent_set_memberEquality_alt productElimination closedConclusion because_Cache lambdaFormation_alt equalityElimination sqequalRule independent_isectElimination functionEquality setEquality productEquality applyEquality intEquality lambdaEquality_alt baseClosed setElimination rename equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIstype promote_hyp cumulativity independent_functionElimination voidElimination approximateComputation int_eqEquality Error :memTop,  independent_pairFormation

Latex:
\mforall{}[A,B:Type].  \mforall{}[C:A  {}\mrightarrow{}  B  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbZ{}].    (vdf(A;B;a,b.C[a;b];n)  \mmember{}  Type)



Date html generated: 2020_05_19-PM-09_40_17
Last ObjectModification: 2020_03_05-AM-11_07_45

Theory : co-recursion-2


Home Index