Nuprl Lemma : vdf-eq-append1

A:Type. ∀f:Top. ∀L:(a:Top × b:Top × Top) List. ∀a,b,c:Top.
  (vdf-eq(A;f;L [<a, b, c>]) x:vdf-eq(A;f;L) ⋂ (f b) ∈ A)


Proof




Definitions occuring in Statement :  vdf-eq: vdf-eq(A;f;L) append: as bs cons: [a b] nil: [] list: List dep-isect: x:A ⋂ B[x] top: Top all: x:A. B[x] apply: a pair: <a, b> product: x:A × B[x] universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} select: L[n] cons: [a b] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  less_than: a < b squash: T bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q let: let pi1: fst(t) pi2: snd(t) nat: less_than': less_than'(a;b)
Lemmas referenced :  vdf-eq-firstn append_wf top_wf cons_wf nil_wf non_neg_length decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length-append length_of_cons_lemma length_of_nil_lemma decidable__lt length_wf intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than list_wf istype-top istype-universe select-append subtype_rel_list length_wf_nat subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf firstn-append add_nat_wf istype-void nat_properties add-is-int-iff false_wf le_int_wf assert_of_le_int le_wf firstn_all subtract_wf length-singleton
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination productEquality hypothesis dependent_pairEquality_alt inhabitedIsType productIsType dependent_set_memberEquality_alt because_Cache independent_pairFormation unionElimination productElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule universeIsType voidElimination addEquality independent_pairEquality instantiate universeEquality applyEquality closedConclusion cumulativity intEquality equalityTransitivity equalitySymmetry equalityElimination imageElimination equalityIstype promote_hyp applyLambdaEquality setElimination rename pointwiseFunctionality baseApply baseClosed

Latex:
\mforall{}A:Type.  \mforall{}f:Top.  \mforall{}L:(a:Top  \mtimes{}  b:Top  \mtimes{}  Top)  List.  \mforall{}a,b,c:Top.
    (vdf-eq(A;f;L  @  [<a,  b,  c>])  \msim{}  x:vdf-eq(A;f;L)  \mcap{}  a  =  (f  L  b))



Date html generated: 2020_05_19-PM-09_40_41
Last ObjectModification: 2020_03_09-PM-01_39_15

Theory : co-recursion-2


Home Index