Nuprl Lemma : vdf-eq-firstn

A:Type. ∀f:Top. ∀L:(a:Top × b:Top × Top) List. ∀i:ℕ||L||.
  (vdf-eq(A;f;firstn(i 1;L)) x:vdf-eq(A;f;firstn(i;L)) ⋂ let tr L[i] in
                                                                 (fst(tr)) (f firstn(i;L) (fst(snd(tr)))) ∈ A)


Proof




Definitions occuring in Statement :  vdf-eq: vdf-eq(A;f;L) firstn: firstn(n;as) select: L[n] length: ||as|| list: List dep-isect: x:A ⋂ B[x] int_seg: {i..j-} let: let top: Top pi1: fst(t) pi2: snd(t) all: x:A. B[x] apply: a product: x:A × B[x] add: m natural_number: $n universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] let: let vdf-eq: vdf-eq(A;f;L) member: t ∈ T uall: [x:A]. B[x] int_iseg: {i...j} int_seg: {i..j-} and: P ∧ Q cand: c∧ B lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] dep-all: dep-all(n;i.P[i]) less_than': less_than'(a;b) true: True nat: ge: i ≥  guard: {T} int_upper: {i...} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m spreadn: spread3 pi1: fst(t) pi2: snd(t)
Lemmas referenced :  int_seg_wf length_wf top_wf list_wf istype-top istype-universe int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf intformless_wf int_formula_prop_less_lemma istype-le subtype_rel_sets_simple lelt_wf le_wf istype-less_than less_than_wf add-subtract-cancel length_firstn nat_properties ge_wf istype-int_upper subtract-1-ge-0 int_upper_properties istype-nat int_seg_subtype_nat istype-false decidable__lt subtract_wf itermSubtract_wf int_term_value_subtract_lemma upper_subtype_upper not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel subtract-add-cancel subtype_rel_list upper_subtype_nat not-lt-2 zero-add add_functionality_wrt_le select-firstn firstn-firstn select_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule hypothesis universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality productEquality hypothesisEquality instantiate universeEquality dependent_set_memberEquality_alt addEquality setElimination rename productElimination imageElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination because_Cache productIsType applyEquality intEquality lessCases isect_memberFormation_alt axiomSqEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType imageMemberEquality baseClosed equalityTransitivity equalitySymmetry intWeakElimination functionIsTypeImplies minusEquality multiplyEquality closedConclusion equalityIstype

Latex:
\mforall{}A:Type.  \mforall{}f:Top.  \mforall{}L:(a:Top  \mtimes{}  b:Top  \mtimes{}  Top)  List.  \mforall{}i:\mBbbN{}||L||.
    (vdf-eq(A;f;firstn(i  +  1;L))  \msim{}  x:vdf-eq(A;f;firstn(i;L))  \mcap{}  let  tr  =  L[i]  in
                                                                                                                                  (fst(tr))
                                                                                                                                  =  (f  firstn(i;L)  (fst(snd(tr)))))



Date html generated: 2020_05_19-PM-09_40_36
Last ObjectModification: 2020_03_09-PM-01_10_06

Theory : co-recursion-2


Home Index