Nuprl Lemma : W-induction1
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[Q:W(A;a.B[a]) ⟶ ℙ].
  ((∀a:A. ∀f:B[a] ⟶ W(A;a.B[a]).  ((∀b:B[a]. Q[f b]) ⇒ Q[Wsup(a;f)])) ⇒ (∀w:W(A;a.B[a]). Q[w]))
Proof
Definitions occuring in Statement : 
Wsup: Wsup(a;b), 
W: W(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
subtype_rel: A ⊆r B, 
W: W(A;a.B[a]), 
uimplies: b supposing a, 
unit: Unit, 
prop: ℙ, 
pW-sup: pW-sup(a;f), 
Wsup: Wsup(a;b), 
guard: {T}
Lemmas referenced : 
param-W-induction, 
unit_wf2, 
it_wf, 
subtype_rel-equal, 
param-W_wf, 
equal-unit, 
all_wf, 
W_wf, 
Wsup_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[Q:W(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}f:B[a]  {}\mrightarrow{}  W(A;a.B[a]).    ((\mforall{}b:B[a].  Q[f  b])  {}\mRightarrow{}  Q[Wsup(a;f)]))  {}\mRightarrow{}  (\mforall{}w:W(A;a.B[a]).  Q[w]))
Date html generated:
2016_05_14-AM-06_15_31
Last ObjectModification:
2015_12_26-PM-00_04_55
Theory : co-recursion
Home
Index