Nuprl Lemma : Wleq_weakening

[A:Type]. ∀[B:A ⟶ Type].  ∀w1,w2:W(A;a.B[a]).  ((w1 <  w2)  (w1 ≤  w2))


Proof




Definitions occuring in Statement :  Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) bfalse: ff btrue: tt uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: infix_ap: y all: x:A. B[x] subtype_rel: A ⊆B Wcmp: Wcmp(A;a.B[a];leq) Wsup: Wsup(a;b) ifthenelse: if then else fi  bfalse: ff btrue: tt exists: x:A. B[x] guard: {T}
Lemmas referenced :  W-induction all_wf W_wf Wcmp_wf bfalse_wf btrue_wf Wsup_wf infix_ap_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality independent_functionElimination lambdaFormation because_Cache instantiate cumulativity universeEquality productElimination dependent_pairFormation dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}w1,w2:W(A;a.B[a]).    ((w1  <    w2)  {}\mRightarrow{}  (w1  \mleq{}    w2))



Date html generated: 2016_05_14-AM-06_15_53
Last ObjectModification: 2015_12_26-PM-00_04_41

Theory : co-recursion


Home Index