Nuprl Lemma : Wleq_weakening
∀[A:Type]. ∀[B:A ⟶ Type].  ∀w1,w2:W(A;a.B[a]).  ((w1 <  w2) 
⇒ (w1 ≤  w2))
Proof
Definitions occuring in Statement : 
Wcmp: Wcmp(A;a.B[a];leq)
, 
W: W(A;a.B[a])
, 
bfalse: ff
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
Wcmp: Wcmp(A;a.B[a];leq)
, 
Wsup: Wsup(a;b)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
W-induction, 
all_wf, 
W_wf, 
Wcmp_wf, 
bfalse_wf, 
btrue_wf, 
Wsup_wf, 
infix_ap_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
instantiate, 
cumulativity, 
universeEquality, 
productElimination, 
dependent_pairFormation, 
dependent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}w1,w2:W(A;a.B[a]).    ((w1  <    w2)  {}\mRightarrow{}  (w1  \mleq{}    w2))
Date html generated:
2016_05_14-AM-06_15_53
Last ObjectModification:
2015_12_26-PM-00_04_41
Theory : co-recursion
Home
Index