Nuprl Lemma : bar-diverges_functionality
∀[T:Type]. ∀[x,y:bar-base(T)].  (bar-equal(T;x;y) 
⇒ {x↑ 
⇐⇒ y↑})
Proof
Definitions occuring in Statement : 
bar-equal: bar-equal(T;x;y)
, 
bar-diverges: x↑
, 
bar-base: bar-base(T)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
bar-diverges: x↑
, 
all: ∀x:A. B[x]
, 
bar-equal: bar-equal(T;x;y)
Lemmas referenced : 
bar-diverges-iff, 
bar-converges_wf, 
bar-diverges_wf, 
bar-equal_wf, 
assert_wf, 
isl_wf, 
unit_wf2, 
bar-val_wf, 
nat_wf, 
bar-base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
lambdaEquality, 
dependent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:bar-base(T)].    (bar-equal(T;x;y)  {}\mRightarrow{}  \{x\muparrow{}  \mLeftarrow{}{}\mRightarrow{}  y\muparrow{}\})
Date html generated:
2016_05_14-AM-06_20_37
Last ObjectModification:
2015_12_26-PM-00_00_35
Theory : co-recursion
Home
Index