Nuprl Lemma : bar-diverges-iff
∀[T:Type]. ∀[x:bar-base(T)].  (x↑ 
⇐⇒ ∀[a:T]. (¬x↓a))
Proof
Definitions occuring in Statement : 
bar-diverges: x↑
, 
bar-converges: x↓a
, 
bar-base: bar-base(T)
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bar-diverges: x↑
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
bar-converges: x↓a
, 
exists: ∃x:A. B[x]
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
bar-converges-not-diverges, 
bar-converges_wf, 
bar-diverges_wf, 
uall_wf, 
not_wf, 
assert_wf, 
isl_wf, 
unit_wf2, 
bar-val_wf, 
nat_wf, 
bar-base_wf, 
outl_wf, 
equal_wf, 
true_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
voidElimination, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
universeEquality, 
independent_isectElimination, 
dependent_pairFormation, 
unionEquality, 
inlEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[x:bar-base(T)].    (x\muparrow{}  \mLeftarrow{}{}\mRightarrow{}  \mforall{}[a:T].  (\mneg{}x\mdownarrow{}a))
Date html generated:
2017_04_14-AM-07_46_07
Last ObjectModification:
2017_02_27-PM-03_16_30
Theory : co-recursion
Home
Index