Nuprl Lemma : bar-diverges-iff

[T:Type]. ∀[x:bar-base(T)].  (x↑ ⇐⇒ ∀[a:T]. x↓a))


Proof




Definitions occuring in Statement :  bar-diverges: x↑ bar-converges: x↓a bar-base: bar-base(T) uall: [x:A]. B[x] iff: ⇐⇒ Q not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] bar-diverges: x↑ all: x:A. B[x] uimplies: supposing a bar-converges: x↓a exists: x:A. B[x] isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff
Lemmas referenced :  bar-converges-not-diverges bar-converges_wf bar-diverges_wf uall_wf not_wf assert_wf isl_wf unit_wf2 bar-val_wf nat_wf bar-base_wf outl_wf equal_wf true_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache hypothesisEquality independent_functionElimination hypothesis voidElimination cumulativity sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality isect_memberEquality universeEquality independent_isectElimination dependent_pairFormation unionEquality inlEquality unionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[x:bar-base(T)].    (x\muparrow{}  \mLeftarrow{}{}\mRightarrow{}  \mforall{}[a:T].  (\mneg{}x\mdownarrow{}a))



Date html generated: 2017_04_14-AM-07_46_07
Last ObjectModification: 2017_02_27-PM-03_16_30

Theory : co-recursion


Home Index