Nuprl Lemma : implies-bar-equal

[T:Type]. ∀x,y:bar-base(T).  (((∃a:T. (x↓a ∧ y↓a)) ∨ (x↑ ∧ y↑))  bar-equal(T;x;y))


Proof




Definitions occuring in Statement :  bar-equal: bar-equal(T;x;y) bar-diverges: x↑ bar-converges: x↓a bar-base: bar-base(T) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: member: t ∈ T and: P ∧ Q exists: x:A. B[x] or: P ∨ Q implies:  Q all: x:A. B[x] uall: [x:A]. B[x] rev_implies:  Q iff: ⇐⇒ Q bar-equal: bar-equal(T;x;y) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} false: False not: ¬A
Lemmas referenced :  bar-base_wf bar-diverges_wf bar-converges_wf exists_wf or_wf bar-converges-unique squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal bar-converges-not-diverges
Rules used in proof :  universeEquality hypothesis productEquality lambdaEquality sqequalRule hypothesisEquality cumulativity isectElimination extract_by_obid introduction cut productElimination thin unionElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairFormation independent_functionElimination applyEquality Error :lambdaEquality_alt,  imageElimination equalityTransitivity equalitySymmetry Error :universeIsType,  natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination voidElimination because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}x,y:bar-base(T).    (((\mexists{}a:T.  (x\mdownarrow{}a  \mwedge{}  y\mdownarrow{}a))  \mvee{}  (x\muparrow{}  \mwedge{}  y\muparrow{}))  {}\mRightarrow{}  bar-equal(T;x;y))



Date html generated: 2019_06_20-PM-00_37_06
Last ObjectModification: 2018_10_11-PM-04_08_48

Theory : co-recursion


Home Index