Nuprl Lemma : implies-bar-equal
∀[T:Type]. ∀x,y:bar-base(T).  (((∃a:T. (x↓a ∧ y↓a)) ∨ (x↑ ∧ y↑)) ⇒ bar-equal(T;x;y))
Proof
Definitions occuring in Statement : 
bar-equal: bar-equal(T;x;y), 
bar-diverges: x↑, 
bar-converges: x↓a, 
bar-base: bar-base(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
member: t ∈ T, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
bar-equal: bar-equal(T;x;y), 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
false: False, 
not: ¬A
Lemmas referenced : 
bar-base_wf, 
bar-diverges_wf, 
bar-converges_wf, 
exists_wf, 
or_wf, 
bar-converges-unique, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
bar-converges-not-diverges
Rules used in proof : 
universeEquality, 
hypothesis, 
productEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
cumulativity, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
productElimination, 
thin, 
unionElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
independent_functionElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
voidElimination, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}x,y:bar-base(T).    (((\mexists{}a:T.  (x\mdownarrow{}a  \mwedge{}  y\mdownarrow{}a))  \mvee{}  (x\muparrow{}  \mwedge{}  y\muparrow{}))  {}\mRightarrow{}  bar-equal(T;x;y))
Date html generated:
2019_06_20-PM-00_37_06
Last ObjectModification:
2018_10_11-PM-04_08_48
Theory : co-recursion
Home
Index