Nuprl Lemma : bar-converges-unique
∀[T:Type]. ∀[x:bar-base(T)]. ∀[a,b:T].  (x↓a 
⇒ x↓b 
⇒ (a = b ∈ T))
Proof
Definitions occuring in Statement : 
bar-converges: x↓a
, 
bar-base: bar-base(T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
bar-converges: x↓a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
true: True
, 
btrue: tt
, 
isl: isl(x)
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
bar-base_wf, 
bar-val_wf, 
unit_wf2, 
equal_wf, 
nat_wf, 
exists_wf, 
decidable__le, 
bar-val-stable, 
isl_wf, 
assert_wf, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
inlEquality, 
hypothesisEquality, 
cumulativity, 
unionEquality, 
lambdaEquality, 
isectElimination, 
extract_by_obid, 
hypothesis, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
unionElimination, 
rename, 
setElimination, 
independent_isectElimination, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
natural_numberEquality, 
applyEquality, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
addEquality, 
voidEquality, 
intEquality, 
minusEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:bar-base(T)].  \mforall{}[a,b:T].    (x\mdownarrow{}a  {}\mRightarrow{}  x\mdownarrow{}b  {}\mRightarrow{}  (a  =  b))
Date html generated:
2019_06_20-PM-00_37_02
Last ObjectModification:
2018_09_16-PM-01_32_22
Theory : co-recursion
Home
Index