Nuprl Lemma : bar-converges-unique

[T:Type]. ∀[x:bar-base(T)]. ∀[a,b:T].  (x↓ x↓ (a b ∈ T))


Proof




Definitions occuring in Statement :  bar-converges: x↓a bar-base: bar-base(T) uall: [x:A]. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: exists: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] bar-converges: x↓a or: P ∨ Q decidable: Dec(P) nat: all: x:A. B[x] uimplies: supposing a true: True btrue: tt isl: isl(x) ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  bar-base_wf bar-val_wf unit_wf2 equal_wf nat_wf exists_wf decidable__le bar-val-stable isl_wf assert_wf false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel
Rules used in proof :  universeEquality because_Cache isect_memberEquality axiomEquality dependent_functionElimination inlEquality hypothesisEquality cumulativity unionEquality lambdaEquality isectElimination extract_by_obid hypothesis thin productElimination sqequalHypSubstitution lambdaFormation cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution unionElimination rename setElimination independent_isectElimination applyLambdaEquality equalitySymmetry hyp_replacement natural_numberEquality applyEquality independent_pairFormation voidElimination independent_functionElimination addEquality voidEquality intEquality minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:bar-base(T)].  \mforall{}[a,b:T].    (x\mdownarrow{}a  {}\mRightarrow{}  x\mdownarrow{}b  {}\mRightarrow{}  (a  =  b))



Date html generated: 2019_06_20-PM-00_37_02
Last ObjectModification: 2018_09_16-PM-01_32_22

Theory : co-recursion


Home Index