Nuprl Lemma : bar-val-stable

[T:Type]. ∀[n:ℕ]. ∀[x:bar-base(T)].
  ∀[m:ℤ]. bar-val(m;x) bar-val(n;x) ∈ (T?) supposing n ≤ supposing ↑isl(bar-val(n;x))


Proof




Definitions occuring in Statement :  bar-val: bar-val(n;x) bar-base: bar-base(T) nat: assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B unit: Unit union: left right int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B all: x:A. B[x] bar-val: bar-val(n;x) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt eq_int: (i =z j) subtract: m bfalse: ff le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) top: Top true: True exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb squash: T nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf assert_wf isl_wf unit_wf2 bar-val_wf bar-base_wf bar-base-subtype true_wf false_wf equal_wf decidable__le subtract_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int le_weakening squash_wf not-le-2 not-equal-2 le-add-cancel-alt iff_weakening_equal le_weakening2 nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry intEquality cumulativity because_Cache applyEquality unionEquality unionElimination inlEquality dependent_set_memberEquality independent_pairFormation productElimination addEquality voidEquality minusEquality equalityElimination dependent_pairFormation promote_hyp instantiate imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:bar-base(T)].
    \mforall{}[m:\mBbbZ{}].  bar-val(m;x)  =  bar-val(n;x)  supposing  n  \mleq{}  m  supposing  \muparrow{}isl(bar-val(n;x))



Date html generated: 2017_04_14-AM-07_45_59
Last ObjectModification: 2017_02_27-PM-03_16_37

Theory : co-recursion


Home Index