Nuprl Lemma : pcw-consistent-paths_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[f,g:Path].
  (pcw-consistent-paths(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  pcw-consistent-paths: pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) pcw-path: Path uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-consistent-paths: pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] pcw-path: Path
Lemmas referenced :  all_wf nat_wf not_wf pcw-final-step_wf equal_wf pcw-step_wf pcw-path_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality cumulativity hypothesisEquality applyEquality functionExtensionality because_Cache setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].  \mforall{}[f,g:Path].
    (pcw-consistent-paths(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];f;g)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_14-AM-07_42_02
Last ObjectModification: 2017_02_27-PM-03_13_47

Theory : co-recursion


Home Index