Nuprl Lemma : pcw-consistent-paths_wf
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[f,g:Path].
  (pcw-consistent-paths(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
pcw-consistent-paths: pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g)
, 
pcw-path: Path
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pcw-consistent-paths: pcw-consistent-paths(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
pcw-path: Path
Lemmas referenced : 
all_wf, 
nat_wf, 
not_wf, 
pcw-final-step_wf, 
equal_wf, 
pcw-step_wf, 
pcw-path_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].  \mforall{}[f,g:Path].
    (pcw-consistent-paths(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];f;g)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_14-AM-07_42_02
Last ObjectModification:
2017_02_27-PM-03_13_47
Theory : co-recursion
Home
Index