Nuprl Lemma : play-truncate-trivial
∀[g:SimpleGame]. ∀[n:ℕ]. ∀[s:win2strat(g;n)]. ∀[f:strat2play(g;n;s)]. ∀[k:ℤ].
  play-truncate(f;k) ~ f supposing k = ||f|| ∈ ℤ
Proof
Definitions occuring in Statement : 
strat2play: strat2play(g;n;s), 
win2strat: win2strat(g;n), 
play-truncate: play-truncate(f;m), 
play-len: ||moves||, 
simple-game: SimpleGame, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
sqequal: s ~ t, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sq_type: SQType(T), 
pi1: fst(t), 
seq-len: ||s||, 
seq-truncate: seq-truncate(s;n), 
play-len: ||moves||, 
play-truncate: play-truncate(f;m), 
sequence: sequence(T), 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
nat: ℕ, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_base_sq, 
simple-game_wf, 
nat_wf, 
win2strat_wf, 
strat2play_wf, 
play-len_wf, 
int_subtype_base, 
equal-wf-base-T, 
equal_wf, 
seq-len_wf, 
le_wf, 
sg-pos_wf, 
sequence_wf, 
strat2play_subtype
Rules used in proof : 
independent_isectElimination, 
cumulativity, 
instantiate, 
productElimination, 
isect_memberEquality, 
intEquality, 
sqequalAxiom, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
because_Cache, 
natural_numberEquality, 
multiplyEquality, 
addEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:win2strat(g;n)].  \mforall{}[f:strat2play(g;n;s)].  \mforall{}[k:\mBbbZ{}].
    play-truncate(f;k)  \msim{}  f  supposing  k  =  ||f||
Date html generated:
2018_07_25-PM-01_32_37
Last ObjectModification:
2018_06_27-PM-08_22_05
Theory : co-recursion
Home
Index