Nuprl Lemma : MP+truncated-KS-imply-truncated-LEM
(∀P:ℕ ⟶ ℙ. ((∀n:ℕ. Dec(P[n])) ⇒ (¬(∀n:ℕ. (¬P[n]))) ⇒ (∃n:ℕ. P[n])))
⇒ (∀A:ℙ. ⇃(∃a:ℕ ⟶ ℕ. (A ⇐⇒ ∃n:ℕ. ((a n) = 1 ∈ ℤ))))
⇒ (∀P:ℙ. ⇃(P ∨ (¬P)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
nat: ℕ, 
decidable: Dec(P), 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
not: ¬A, 
guard: {T}, 
nat: ℕ, 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Lemmas referenced : 
not_over_exists, 
decidable__int_equal, 
not-not-excluded-middle-quot-true, 
implies-quotient-true2, 
or_wf, 
not_wf, 
decidable_wf, 
equiv_rel_true, 
true_wf, 
equal-wf-T-base, 
iff_wf, 
nat_wf, 
exists_wf, 
quotient_wf, 
all_wf
Rules used in proof : 
natural_numberEquality, 
promote_hyp, 
impliesFunctionality, 
productElimination, 
independent_functionElimination, 
rename, 
setElimination, 
dependent_functionElimination, 
cumulativity, 
baseClosed, 
functionExtensionality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
thin, 
cut, 
universeEquality, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
(\mforall{}P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  Dec(P[n]))  {}\mRightarrow{}  (\mneg{}(\mforall{}n:\mBbbN{}.  (\mneg{}P[n])))  {}\mRightarrow{}  (\mexists{}n:\mBbbN{}.  P[n])))
{}\mRightarrow{}  (\mforall{}A:\mBbbP{}.  \00D9(\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (A  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  ((a  n)  =  1))))
{}\mRightarrow{}  (\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mneg{}P)))
Date html generated:
2017_04_20-AM-07_36_09
Last ObjectModification:
2017_04_11-AM-05_18_24
Theory : continuity
Home
Index