Nuprl Lemma : axiom-choice-quot-alt-proof
∀T:Type
  (⇃(canonicalizable(T)) 
⇒ (∀X:Type. ∀P:T ⟶ X ⟶ ℙ.  ((∀f:T. ⇃(∃m:X. (P f m))) 
⇒ ⇃(∃F:T ⟶ X. ∀f:T. (P f (F f))))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
canonicalizable: canonicalizable(T)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
pi1: fst(t)
, 
guard: {T}
, 
choice-principle: ChoicePrinciple(T)
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
implies-quotient-true, 
canonicalizable_wf, 
equiv_rel_true, 
true_wf, 
exists_wf, 
quotient_wf, 
all_wf, 
choice-iff-canonicalizable
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
rename, 
dependent_pairFormation, 
promote_hyp, 
universeEquality, 
functionEquality, 
independent_isectElimination, 
because_Cache, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
cumulativity, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}T:Type
    (\00D9(canonicalizable(T))
    {}\mRightarrow{}  (\mforall{}X:Type.  \mforall{}P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}f:T.  \00D9(\mexists{}m:X.  (P  f  m)))  {}\mRightarrow{}  \00D9(\mexists{}F:T  {}\mrightarrow{}  X.  \mforall{}f:T.  (P  f  (F  f))))))
Date html generated:
2018_07_25-PM-01_50_26
Last ObjectModification:
2018_07_25-PM-00_19_24
Theory : continuity
Home
Index