Nuprl Lemma : axiom-choice-quot-alt-proof

T:Type
  (⇃(canonicalizable(T))  (∀X:Type. ∀P:T ⟶ X ⟶ ℙ.  ((∀f:T. ⇃(∃m:X. (P m)))  ⇃(∃F:T ⟶ X. ∀f:T. (P (F f))))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] canonicalizable: canonicalizable(T) prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  pi1: fst(t) guard: {T} choice-principle: ChoicePrinciple(T) uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  equal_wf implies-quotient-true canonicalizable_wf equiv_rel_true true_wf exists_wf quotient_wf all_wf choice-iff-canonicalizable
Rules used in proof :  equalitySymmetry equalityTransitivity rename dependent_pairFormation promote_hyp universeEquality functionEquality independent_isectElimination because_Cache functionExtensionality applyEquality lambdaEquality sqequalRule cumulativity isectElimination hypothesis independent_functionElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}T:Type
    (\00D9(canonicalizable(T))
    {}\mRightarrow{}  (\mforall{}X:Type.  \mforall{}P:T  {}\mrightarrow{}  X  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}f:T.  \00D9(\mexists{}m:X.  (P  f  m)))  {}\mRightarrow{}  \00D9(\mexists{}F:T  {}\mrightarrow{}  X.  \mforall{}f:T.  (P  f  (F  f))))))



Date html generated: 2018_07_25-PM-01_50_26
Last ObjectModification: 2018_07_25-PM-00_19_24

Theory : continuity


Home Index